Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Graeme J. Gainsford* and Anthony D. Woolhouse

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.057$
$w R$ factor $=0.121$
Data-to-parameter ratio $=10.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

endo-4-Phenyl-7-n-propyl-2-oxa-6-thia-3-azabicyclo[3.2.0 ${ }^{1,4}$]hept-3-ene 6,6-dioxide

Two independent molecules of the title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$, containing the novel endo-thiabicyclo[3.2.0 ${ }^{1,4}$]-hept-3-ene ring, crystallize in a triclinic cell. Both fused rings in the bicyclic system are non-planar, with the five-membered $\mathrm{C}_{3} \mathrm{NO}$ rings adopting envelope conformations.

Comment

The title compound, (I), was prepared as part of a study of the use of carnivore odours in mammal pest control. It is closely related to two previously reported structures: exo-7-aza-6-oxa-4- n-propyl-3-thiabicyclo[5.4.1 ${ }^{1,7} .1^{2,5}$] undecane 3,3-dioxide (Woolhouse et al., 1993) and the exo-stereoisomer exo-7-phenyl-3-n-propyl-5-oxa-2-thia-6-azabicyclo[3.2.0 ${ }^{1,4}$]hept-6ene 2,2-dioxide (Gainsford \& Woolhouse, 2002), being formed from a thiete sulfone (Gainsford \& Woolhouse, 1994).

(I)

The crystal structure of (I) consists of two nearly identical independent molecules (one of these is shown in Fig. 1) and their centrosymmetrically related molecules. Most intermolecular interactions are between each independent molecule and their centrosymmetrically related molecules, e.g.

Figure 1
The molecular structure of one of the two independent molecules of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have arbitrary radii.

Received 26 July 2002
Accepted 9 August 2002
Online 6 September 2002
$\mathrm{C} 113-\mathrm{H} 113 \cdots \mathrm{O} 122^{\mathrm{i}}$, with $\mathrm{C} 113 \cdots \mathrm{O} 122^{\mathrm{i}}=3.303(5) \AA$ [symmetry code: (i) $1-x, 1-y, 1-z$], making two infinite chains along the b crystal axis. The $\mathrm{C} j 1-\mathrm{C} j 4-\mathrm{O} j 5-\mathrm{N} j 6-\mathrm{C} j 7$ five-membered rings, where $j=1$ or 2 , have envelope conformations, with flap atoms Cj 4 at distances of 0.222 (7) and 0.185 (8) \AA from the four-atom plane for $j=1$ and 2 , respectively. The four-membered $\mathrm{C}_{3} \mathrm{~S}$ fused rings are not planar, with mean deviations from the mean plane of 0.0787 (3) and 0.0487 (3) \AA for $j=1$ and 2, respectively. The angles between the mean planes through the two rings are identical at $66.0(3)^{\circ}$. This is unlike the exo-molecule where the fused four- and five-membered rings are planar (Gainsford \& Woolhouse, 2002). The pendant planar phenyl rings Cj8$\mathrm{C} j 13$ are twisted by $5.2(2)$ and $6.9(3)^{\circ}$ for $j=1$ and 2 , respectively, from their bound five-membered ring. The same comments about the oxygen Oj 5 binding in fused-ring systems constructed by cycloaddition apply (see Gainsford \& Woolhouse, 2002).

Experimental

Compound (I) was prepared as described previously by Gainsford \& Woolhouse (2002). Crystals were grown from an ethyl acetatehexane mixture.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=265.32$
Triclinic, $P \overline{1}$
$a=5.282$ (4) \AA
$b=11.241$ (3) \AA
$c=22.588(6) \AA$
$\alpha=79.65$ (2) ${ }^{\circ}$
$\beta=89.67$ (4) ${ }^{\circ}$
$\gamma=76.58(3)^{\circ}$
$V=1282.4(11) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.374 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=5.8-14.6^{\circ} \\
& \mu=0.25 \mathrm{~mm}^{-1} \\
& T=130(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.84 \times 0.32 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens/Nicolet $R 3 m$ four-circle
\quad diffractometer
ω scans
3583 measured reflections
3157 independent reflections
2378 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$

$$
\begin{aligned}
& \theta_{\max }=22.5^{\circ} \\
& h=0 \rightarrow 5 \\
& k=-11 \rightarrow 11 \\
& l=-24 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0097 P)^{2}\right. \\
& +3.7137 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\text {max }} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0068 \text { (8) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S12-O121	$1.425(4)$	S22-O221	$1.425(4)$
S12-O122	$1.434(3)$	O25-N26	$1.409(5)$
S12-C11	$1.822(5)$	N16-C17	$1.287(6)$
O121-S12-O122	$118.9(2)$	C17-N16-O15	$110.8(4)$
C11-S12-C13	$80.5(2)$	C14-C11-S12	$88.9(3)$
C14-O15-N16-C17	$9.8(5)$	C13-S12-C11-C17	$91.5(4)$
C23-S22-C21-C24	$-6.3(3)$	C23-S22-C21-C27	$95.6(4)$

All H atoms were constrained to ride on their parent atom, with a $U_{\text {iso }}$ value 1.2 times the $U_{\text {eq }}$ value of the parent atom.

Data collection: SHELXTL (Siemens, 1983); cell refinement: SHELXTL; data reduction: SHELXTL; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 1990).

The authors thank Dr J. Wikaira and Professor Ward T Robinson of the University of Canterbury for their assistance.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gainsford, G. J. \& Woolhouse, A. D. (1994). Acta Cryst. C50, 606-607.
Gainsford, G. J. \& Woolhouse, A. D. (2002). Acta Cryst. E58, o715-o716.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1983). R3M Software. Version 4.11. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Woolhouse, A. D., Gainsford, G. J. \& Crump, D. R. (1993). J. Heterocycl. Chem. 30, 873-880.

